Adsorption Characteristics of Indigenous Chromium-Resistant Aspergillus niger Strain Isolated from Red Soil for Remediation of Toxic Chromium in Red Soil Environments

Author:

Xu Jiwei,Li Lumeng,Wang HuabinORCID,Gao Zhanyuan,Wang Chuanshu,Sun Rong,Zhang YongORCID,Xu Wumei,Hou Xiying,Xu Rui

Abstract

The microbial treatment of soil has great potential to reduce chromium pollution. Here, an indigenous chromium-resistant Aspergillus niger strain (A1) was isolated and screened from heavily chromium-contaminated red soil in Yunnan Province, China using a traditional isolation method and a selective culture experiment. The molecular identification of A1 was achieved using 18S rRNA sequencing. The tolerance of the strain to toxic chromium was evaluated through pure laboratory culture. The adsorption effect and mechanism of A1 on chromium in red soil were further studied. The study concluded that A1 exhibited strong activity with exposure to 500 mg·L−1 Cr6+. Chromium adsorption by A. niger occurred mainly through intracellular metabolism, surface complexations with EPS, and chemical reduction with -C=C-, -OXuH, NH2, and -C=0. The optimized results showed that A1 had the best Cr6+ removal effect at pH 4, 40 °C, and a 60 h culture time. Compared with the inoculating of exogenous microbial agents, after inoculating A1 into the chromium-contaminated red soil, Cr6+ content was significantly reduced, and the high-toxicity chromium state (water-soluble and exchange states) decreased, whereas the low-toxicity chromium state (precipitation and residue states) increased. The results of red soil ITS also showed that the inoculation of indigenous microorganisms can better colonize the red soil. This study proves the feasibility of the application of indigenous A. niger to address red soil chromium pollution and provides a new idea and theoretical support for red soil remediation.

Funder

Provincial Natural Science Foundation of Yunnan and the Yunnan Provincial Young Talent Program

Basic Research Program Foundation of Yunnan Province

China National Innovative Training Program for college students

University Student Scientific Research Training Fund Project of Yunnan Normal University

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3