Affiliation:
1. Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
Abstract
Nitrites are metastable anions that are derived from the oxidation of ammonia by agricultural pollution, sewage, decaying protein, and other nitrogen sources. They are a recognized environmental issue due to their role in eutrophication, as well as in surface and groundwater contamination, being toxic to almost all living creatures. Recently, we reported on the high efficiency of two cationic resins (R1 and R2) forming hydrogels (R1HG and R2HG) by dispersion in water in removing anionic dyes from water by electrostatic binding. Here, aiming at developing adsorbent materials for nitrite remediation, R1, R2, R1HG, and R2HG were first tested in adsorption experiments in batches monitored by UV–Vis methods, using the Griess reagent system (GRS) in order to assess their removal efficiency by contact over time. Particularly, samples of water appositely contaminated with nitrites were analyzed by UV–Vis before and during treatment with the hydrogels. The initial concentration of nitrites was quantified (118 mg/L). Then, the removal of nitrites over time, the removal efficiency of R1HG (89.2%) and of R2HG (89.6%), their maximum adsorption (21.0 mg/g and 23.5 mg/g), as well as the adsorption kinetics and mechanisms were evaluated. Additionally, R1HG- and R2HG-based columns (h = 8–10 cm, ØE = 2 cm) mimicking mini-scale decontamination systems by filtration were used to rapidly filter samples of water polluted with nitrite that were under pressure. R1HG and R2GH were capable of totally removing nitrites (99.5% and 100%) from volumes of nitrite solutions that were 118 mg/L that is 10 times the volumes of resins used. Additionally, when extending filtration to increasing volumes of the same nitrite solution up to 60 times the volume of resins used, the removal efficiently of R1HG decreased, and that of R2HG remained stable at over 89%. Interestingly, both the worn-out hydrogels were regenerable by 1% HCl washing, without a significant reduction in their original efficiency. There is a lack of studies in the literature reporting on novel methods to remove nitrite from water. R1HG and especially R2HG represent low-cost, up-scalable, and regenerable column-packing materials with promise for applications in the treatment of drinking water contaminated by nitrites.
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology
Reference46 articles.
1. Alo, B.T. (2023, February 17). Scinecing. Available online: https://sciencing.com/list-water-pollutants-6309497.html.
2. Nitrogen in aquatic ecosystems;Rabalais;Ambio,2002
3. (2023, February 07). The Nitrogen Cycle. Available online: https://www.khanacademy.org/science/biology/ecology/biogeochemical-cycles/a/the-nitrogen-cycle.
4. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global Assessment;Camargo;Environ. Int.,2006
5. Water Science School (2023, February 07). Nitrogen and Water. USGS Science for a Changing World, Available online: https://www.usgs.gov/special-topics/water-science-school/science/nitrogen-and-water.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献