Uncertainty Evaluation of Soil Heavy Metal(loid) Pollution and Health Risk in Hunan Province: A Geographic Detector with Monte Carlo Simulation

Author:

Zhang Baoyi1ORCID,Su Yingcai1,Shah Syed Yasir Ali1,Wang Lifang2ORCID

Affiliation:

1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Ministry of Education), School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. Department of Surveying and Mapping Geography, Hunan Vocational College of Engineering, Changsha 410151, China

Abstract

Research on soil heavy metal(loid) pollution and health risk assessment is extensive, but a notable gap exists in systematically examining uncertainty in this process. We employ the Nemerow index, the health risk assessment model, and the geographic detector model (GDM) to analyze soil heavy metal(loid) pollution, assess health risks, and identify driving factors in Hunan Province, China. Furthermore, the Monte Carlo simulation (MCS) method is utilized to quantitatively evaluate the uncertainties associated with the sampling point positions, model parameters, and classification boundaries of the driving factors in these processes. The experimental findings reveal the following key insights: (1) Regions with high levels of heavy metal(loid) pollution, accompanied by low uncertainty, are identified in Chenzhou and Hengyang Cities in Hunan Province. (2) Arsenic (As) and chromium (Cr) are identified as the primary contributors to health risks. (3) The GDM results highlight strong nonlinear enhanced interactions among lithology and other factors. (4) The input GDM factors, such as temperature, river distance, and gross domestic product (GDP), show high uncertainty on the influencing degree of soil heavy metal(loid) pollution. This study thoroughly assesses high heavy metal(loid) pollution in Hunan Province, China, emphasizing uncertainty and offering a scientific foundation for land management and pollution remediation.

Funder

Hunan Provincial Natural Science Foundation

Hunan Provincial Natural Resource Science and Technology Planning Program

Changsha Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3