Electrokinetic Remediation of Zn-Polluted Soft Clay Using a Novel Electrolyte Chamber Configuration

Author:

Sun Zhaohua12,Tan Wanxia1,Gong Jian3ORCID,Wei Guowei4

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China

3. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China

4. Jiangsu Zhongnan Construction Industry Group Co., Ltd., Nantong 226199, China

Abstract

This study investigated a novel electrolyte chamber configuration for heavy-metal-contaminated fine-grained soil to reduce the leakage of electrolyte solution and alleviate secondary pollution, finally promoting the electrokinetic remediation (EKR) potential to be scaled up for application. Experiments were conducted on clay spiked with Zn to investigate the feasibility of the novel EKR configuration and the effect of different electrolyte compositions on the electrokinetic remedial efficiency. The results show that the electrolyte chamber situated above the soil surface is promising for the remediation of Zn-contaminated soft clay. Using 0.2 M citric acid as the anolytes and catholytes was an excellent choice for pH control in the soil and the electrolytes. Through this, the removal efficiency in different soil sections was relatively uniform and more than 90% of the initial Zn was removed. The supplementing of electrolytes resulted in the water content in the soil being distributed evenly and finally sustained at approximately 43%. Consequently, this study proved that the novel EKR configuration is suitable for fine-grained soil contaminated with Zn.

Funder

Key Laboratory of New Technology for Construction of Cities in Mountain Area

Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3