Aflatoxin B1 Exacerbates Genomic Instability and Apoptosis in the BTBR Autism Mouse Model via Dysregulating DNA Repair Pathway

Author:

Alshamrani Ali A.1ORCID,Alwetaid Mohammad Y.1,Al-Hamamah Mohammed A.1,Attia Mohamed S. M.1,Ahmad Sheikh F.1ORCID,Algonaiah Majed A.1,Nadeem Ahmed1ORCID,Ansari Mushtaq A.1ORCID,Bakheet Saleh A.1,Attia Sabry M.1

Affiliation:

1. Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

The pathophysiology of autism is influenced by a combination of environmental and genetic factors. Furthermore, individuals with autism appear to be at a higher risk of developing cancer. However, this is not fully understood. Aflatoxin B1 (AFB1) is a potent food pollutant carcinogen. The effects of AFB1 on genomic instability in autism have not yet been investigated. Hence, we have aimed to investigate whether repeated exposure to AFB1 causes alterations in genomic stability, a hallmark of cancer and apoptosis in the BTBR autism mouse model. The data revealed increased micronuclei generation, oxidative DNA strand breaks, and apoptosis in BTBR animals exposed to AFB1 when compared to unexposed animals. Lipid peroxidation in BTBR mice increased with a reduction in glutathione following AFB1 exposure, demonstrating an exacerbated redox imbalance. Furthermore, the expressions of some of DNA damage/repair- and apoptosis-related genes were also significantly dysregulated. Increases in the redox disturbance and dysregulation in the DNA damage/repair pathway are thus important determinants of susceptibility to AFB1-exacerbated genomic instability and apoptosis in BTBR mice. This investigation shows that AFB1-related genomic instability can accelerate the risk of cancer development. Moreover, approaches that ameliorate the redox balance and DNA damage/repair dysregulation may mitigate AFB1-caused genomic instability.

Funder

the Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3