Sources, Fate, and Detection of Dust-Associated Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS): A Review

Author:

Ismail Usman M.1ORCID,Elnakar Haitham12ORCID,Khan Muhammad Faizan3

Affiliation:

1. Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

2. Interdisciplinary Research Centre for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

3. Alberta Environment and Protected Areas, Drinking Water and Wastewater, Regulatory Assurance Division, Government of Alberta, 2938 11 St. NE, Calgary, AB T2E 7L7, Canada

Abstract

The occurrence of sand and dust storms (SDSs) is essential for the geochemical cycling of nutrients; however, it is considered a meteorological hazard common to arid regions because of the adverse impacts that SDSs brings with them. One common implication of SDSs is the transport and disposition of aerosols coated with anthropogenic contaminants. Studies have reported the presence of such contaminants in desert dust; however, similar findings related to ubiquitous emerging contaminants, such as per- and poly-fluoroalkyl substances (PFAS), have been relatively scarce in the literature. This article reviews and identifies the potential sources of dust-associated PFAS that can accumulate and spread across SDS-prone regions. Furthermore, PFAS exposure routes and their toxicity through bioaccumulation in rodents and mammals are discussed. The major challenge when dealing with emerging contaminants is their quantification and analysis from different environmental media, and these PFAS include known and unknown precursors that need to be quantified. Consequently, a review of various analytical methods capable of detecting different PFAS compounds embedded in various matrices is provided. This review will provide researchers with valuable information relevant to the presence, toxicity, and quantification of dust-associated PFAS to develop appropriate mitigation measures.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3