Insights into the Understanding of Adsorption Behaviors of Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFASs) on Various Anion-Exchange Resins

Author:

Tan Hong-Ming12,Pan Chang-Gui13ORCID,Yin Chao1,Yu Kefu12ORCID

Affiliation:

1. Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China

2. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

3. Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China

Abstract

Per- and polyfluoroalkyl substances (PFASs) have received extensive attention due to their various harmful effects. In this study, the adsorptive removal of 10 legacy and emerging PFASs by four anion-exchange resins (including gel and macroreticular resins) were systematically investigated. Our results showed that the capacities of resins absorbing PFASs were ranked in the following order: gel strong base HPR4700 (297~300 μg/g) ≈ macroreticular strong base S6368 (294~300 μg/g) ≈ macroreticular weak base A111S (289~300 μg/g) > gel weak base WA10 (233~297 μg/g). Adsorption kinetic results indicated that the adsorption process might involve chemical and Henry regime adsorption or reaction control. Intraparticle diffusion was probably the major removal step. Co-existing fulvic acid (0.5, 1, 5 mg/L) and inorganic anions (5 mg/L of sulfate, carbonate, bicarbonate) would hinder the PFAS removal by resins with WA10 showing the highest inhibition rate of 17% and 71%, respectively. The adsorption capacities of PFBA decreased from 233 μg/g to 194 μg/g, and from 233 μg/g to 67 μg/g in the presence of fulvic acid and inorganic anions, respectively. PFASs were more easily removed by HPR4700, S6368, and A111S under neutral and alkaline environment. Moreover, WA10 was not able to remove PFASs under an alkaline medium. This study offered theoretical support for removing PFASs from aqueous phases with various resins.

Funder

Innovation-driven Development Projects

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3