QSAR Models for the Prediction of Dietary Biomagnification Factor in Fish

Author:

Bertato Linda1ORCID,Chirico Nicola1,Papa Ester1

Affiliation:

1. Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy

Abstract

Xenobiotics released in the environment can be taken up by aquatic and terrestrial organisms and can accumulate at higher concentrations through the trophic chain. Bioaccumulation is therefore one of the PBT properties that authorities require to assess for the evaluation of the risks that chemicals may pose to humans and the environment. The use of an integrated testing strategy (ITS) and the use of multiple sources of information are strongly encouraged by authorities in order to maximize the information available and reduce testing costs. Moreover, considering the increasing demand for development and the application of new approaches and alternatives to animal testing, the development of in silico cost-effective tools such as QSAR models becomes increasingly important. In this study, a large and curated literature database of fish laboratory-based values of dietary biomagnification factor (BMF) was used to create externally validated QSARs. The quality categories (high, medium, low) available in the database were used to extract reliable data to train and validate the models, and to further address the uncertainty in low-quality data. This procedure was useful for highlighting problematic compounds for which additional experimental effort would be required, such as siloxanes, highly brominated and chlorinated compounds. Two models were suggested as final outputs in this study, one based on good-quality data and the other developed on a larger dataset of consistent Log BMFL values, which included lower-quality data. The models had similar predictive ability; however, the second model had a larger applicability domain. These QSARs were based on simple MLR equations that could easily be applied for the predictions of dietary BMFL in fish, and support bioaccumulation assessment procedures at the regulatory level. To ease the application and dissemination of these QSARs, they were included with technical documentation (as QMRF Reports) in the QSAR-ME Profiler software for QSAR predictions available online.

Funder

Chemical and Environmental Sciences

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference38 articles.

1. European Chemicals Agency (2017). Guidance on Information Requirements and Chemical Safety Assessment: Chapter R.7c: Endpoint Specific Guidance, European Chemicals Agency.

2. OECD (2012). Test No 305 Bioaccumulation Fish Aqueous Dietary Exposure, Organisation for Economic Co-Operation and Development.

3. Normalizing the Biomagnification Factor;Gobas;Environ. Toxicol. Chem.,2021

4. Comparison of laboratory-derived biomagnification factors for hexachlorobenzene in common carp conducted under 9 test conditions;Hashizume;Environ. Toxicol. Chem.,2018

5. Revisiting bioaccumulation criteria for POPs and PBT assessments;Gobas;Integr. Environ. Assess. Manag.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3