Transient Nonlinear Heat Conduction in Concrete Structures: A Semi-Analytical Approach

Author:

Wang Hui1,Chen Xi2,Koenders Eduardus3ORCID,Dai Ying4ORCID,Huang Xingchun1,Ai Qing1ORCID,Yuan Yong5ORCID

Affiliation:

1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. College of Civil Engineering and Architecture, Jiaxing University, Jiaxing 314001, China

3. Institute of Construction and Building Materials, Technical University of Darmstadt, 64287 Darmstadt, Germany

4. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

5. College of Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

Thermal loading, especially in fire scenarios, challenges the safety and long-term durability of concrete structures. The resulting heat propagation within the structure is governed by the heat conduction equation, which can be difficult to solve analytically because of the nonlinearity related to the thermophysical properties of concrete. A semi-analytical approach for the transient nonlinear heat conduction problem in concrete structures was established in the present work. The nonlinearity related to the temperature-dependent thermal conductivity, mass density, and specific heat capacity of heated concrete was taken into consideration. A Taylor series approximate solution was first established within a small neighborhood, employing the Boltzmann transformation in combination with the mean value theorem. Thereafter, it was extended to the whole domain by utilizing the Bernstein polynomial. The semi-analytical approach was validated by comparing it with the numerical results of two independent Finite Element simulations of nonlinear heat conduction along concrete plates, subjected to either moderate or fierce thermal loading. Absolute values of the relative errors are smaller than 5%. The validated semi-analytical approach was further applied to prediction of the temporal evolution of the temperature field of a scaled model of a subway station, subjected to fire disaster. The nonlinearities, related to the time-dependent surface temperature and the temperature-dependent thermophysical properties of concrete, were taken into consideration. The predictions agree well with the experimental measurements. The established semi-analytical approach exhibits good accuracy and stability, providing insight into the interaction between the thermophysical properties of concrete in the heat conduction process.

Funder

National Natural Science Foundation of China

Shanghai Pujiang Program

Sino-German Center for Research Promotion

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference57 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3