Joint Analysis of Lightning-Induced Forest Fire and Surface Influence Factors in the Great Xing’an Range

Author:

Zhang QiyueORCID,Homayouni SaeidORCID,Yao HuaxiaORCID,Shu YangORCID,Li Mengzhen,Zhou Mei

Abstract

For several decades, warming-induced fires have been widespread in many forest systems. A forest fire could be a potential indicator, since the Great Xing’an Range is susceptible to global climate changes and frequent extreme events. This region has a relatively integrated forest community structure. This paper investigated 35 factors to explore how natural conditions affect fire scale. We analyzed the fire spatiotemporal distribution, by combining the Google Earth Engine (GEE) platform and historical records, and then reconstructed the fire-prone climate conditions. We used an exploratory model to minimize the climate factors and a geographically and temporally weighted regression (GTWR) model to predict regional large-scale lightning fire occurrence. The main results are (1) Lightning fire occurrence increased during the past four decades, and the regional fire season starts from the spring (May to June). (2) The time of occurrence of lightning fires had a strong correlation with the occurrence density. (3) The main natural factors affecting a fire-affected area are air moisture content, topographic slope, maximum surface air temperature, wind direction, and surface atmospheric pressure. The regional climate can be characterized that the prevailing southeastern wind bringing lots of precipitation and strong surface pressure, combined with the regional periodic lightning weather and irregular high temperatures, forming fire-prone weather. The abnormal soil water content in the spring led to vegetation growth and increased fuel storage. The low air water content and long-term water deficit made the local air dry. Lightning strikes are an influential factor in fire frequency, while climatic conditions shape the fire-affected areas. (4) The seven days of pre-fire data are more accurate for studying lightning fire occurrence. The GTWR model showed the best fitness among the four models. Fire-prone areas showed a trend of increasing from south to north. In the future, lightning fires will likely occur in this region’s north and east. Our work would promote the local forest fire policy-making process.

Funder

Inner Mongolia Autonomous Region Science and Technology Achievement Transformation Project

National Natural Science Foundation of China

Inner Mongolia Natural Science Foundation, China

Inner Mongolia Autonomous Region High-end Foreign Expert Introduction Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference110 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3