Use of Two-Photon Lithography with a Negative Resist and Processing to Realise Cylindrical Magnetic Nanowires

Author:

Askey JosephORCID,Hunt Matthew OliverORCID,Langbein Wolfgang,Ladak Sam

Abstract

Cylindrical magnetic nanowires have been shown to exhibit a vast array of fascinating spin textures, including chiral domains, skyrmion tubes, and topologically protected domain walls that harbor Bloch points. Here, we present a novel methodology that utilizes two-photon lithography in order to realize tailored three-dimensional (3D) porous templates upon prefabricated electrodes. Electrochemical deposition is used to fill these porous templates, and reactive ion etching is used to free the encased magnetic nanowires. The nanowires are found to have a diameter of 420 nm, length of 2.82 μm, and surface roughness of 7.6 nm. Magnetic force microscopy in an externally applied field suggests a complex spiraling magnetization state, which demagnetizes via the production of vortices of alternating chirality. Detailed micro-magnetic simulations confirm such a state and a qualitative agreement is found with respect to the switching of experimental nanowires. Surprisingly, simulations also indicate the presence of a Bloch point as a metastable state during the switching process. Our work provides a new means to realize 3D magnetic nanowires of controlled geometry and calculations suggest a further reduction in diameter to sub-200 nm will be possible, providing access to a regime of ultrafast domain wall motion.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3