Abstract
In this study, to fabricate a non-binder electrode, we grew nickel–cobalt sulfide (NCS) nanotubes (NTs) on a Ni foam substrate using a hydrothermal method through a two-step approach, namely in situ growth and an anion-exchange reaction. This was followed by the electrodeposition of double-layered nickel-cobalt hydroxide (NCOH) over a nanotube-coated substrate to fabricate NCOH core-shell nanotubes. The final product is called NCS@NCOH herein. Structural and morphological analyses of the synthesized electrode materials were conducted via SEM and XRD. Different electrodeposition times were selected, including 10, 20, 40, and 80 s. The results indicate that the NCSNTs electrodeposited with NCOH nanosheets for 40 s have the highest specific capacitance (SC), cycling stability (2105 Fg−1 at a current density of 2 Ag−1), and capacitance retention (65.1% after 3,000 cycles), in comparison with those electrodeposited for 10, 20, and 80 s. Furthermore, for practical applications, a device with negative and positive electrodes made of active carbon and NCS@NCOH was fabricated, achieving a high-energy density of 23.73 Whkg−1 at a power density of 400 Wkg−1.
Subject
General Materials Science,General Chemical Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献