Individual Tree Crown Segmentation of a Larch Plantation Using Airborne Laser Scanning Data Based on Region Growing and Canopy Morphology Features

Author:

Ma ZhenyuORCID,Pang YongORCID,Wang DiORCID,Liang Xiaojun,Chen Bowei,Lu HaoORCID,Weinacker Holger,Koch Barbara

Abstract

The detection of individual trees in a larch plantation could improve the management efficiency and production prediction. This study introduced a two-stage individual tree crown (ITC) segmentation method for airborne light detection and ranging (LiDAR) point clouds, focusing on larch plantation forests with different stem densities. The two-stage segmentation method consists of the region growing and morphology segmentation, which combines advantages of the region growing characteristics and the detailed morphology structures of tree crowns. The framework comprises five steps: (1) determination of the initial dominant segments using a region growing algorithm, (2) identification of segments to be redefined based on the 2D hull convex area of each segment, (3) establishment and selection of profiles based on the tree structures, (4) determination of the number of trees using the correlation coefficient of residuals between Gaussian fitting and the tree canopy shape described in each profile, and (5) k-means segmentation to obtain the point cloud of a single tree. The accuracy was evaluated in terms of correct matching, recall, precision, and F-score in eight plots with different stem densities. Results showed that the proposed method significantly increased ITC detections compared with that of using only the region growing algorithm, where the correct matching rate increased from 73.5% to 86.1%, and the recall value increased from 0.78 to 0.89.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3