The Delineation and Grading of Actual Crop Production Units in Modern Smallholder Areas Using RS Data and Mask R-CNN

Author:

Lv Yahui,Zhang Chao,Yun Wenju,Gao Lulu,Wang Huan,Ma Jiani,Li Hongju,Zhu Dehai

Abstract

The extraction and evaluation of crop production units are important foundations for agricultural production and management in modern smallholder regions, which are very significant to the regulation and sustainable development of agriculture. Crop areas have been recognized efficiently and accurately via remote sensing (RS) and machine learning (ML), especially deep learning (DL), which are too rough for modern smallholder production. In this paper, a delimitation-grading method for actual crop production units (ACPUs) based on RS images was explored using a combination of a mask region-based convolutional neural network (Mask R-CNN), spatial analysis, comprehensive index evaluation, and cluster analysis. Da’an City, Jilin province, China, was chosen as the study region to satisfy the agro-production demands in modern smallholder areas. Firstly, the ACPUs were interpreted from perspectives such as production mode, spatial form, and actual productivity. Secondly, cultivated land plots (C-plots) were extracted by Mask R-CNN with high-resolution RS images, which were used to delineate contiguous cultivated land plots (CC-plots) on the basis of auxiliary data correction. Then, the refined delimitation-grading results of the ACPUs were obtained through comprehensive evaluation of spatial characteristics and real productivity clustering. For the conclusion, the effectiveness of the Mask R-CNN model in C-plot recognition (loss = 0.16, mean average precision (mAP) = 82.29%) and a reasonable distance threshold (20 m) for CC-plot delimiting were verified. The spatial features were evaluated with the scale-shape dimensions of nine specific indicators. Real productivities were clustered by the incorporation of two-step cluster and K-Means cluster. Furthermore, most of the ACPUs in the study area were of a reasonable scale and an appropriate shape, holding real productivities at a medium level or above. The proposed method in this paper can be adjusted according to the changes of the study area with flexibility to assist agro-supervision in many modern smallholder regions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3