Indoor Thermal Environment and Occupant’s Living Pattern of Traditional Timber Houses in Tropics

Author:

Islam Rezuana,Ahmed Khandaker ShabbirORCID

Abstract

Traditional timber houses in tropics have specific environmental characteristics that evolved considering material constraints, local construction technology and climate. To provide occupants with the necessary comfort, these naturally ventilated houses adopted several passive design strategies. Moreover, occupants have unique living patterns which may have contributed towards achieving indoor thermal comfort. However, scientific knowledge regarding these issues is still limited. Therefore, considering traditional timber houses of Bangladesh as sample cases, this study aims to investigate existing relationship between an indoor thermal environment and an occupant’s living pattern within these tropical houses. Physical measurement of thermal parameters and questionnaire surveys followed by personal observations were conducted. Findings show that indoor air temperature (AT °C) fluctuates readily with that outdoors without a timelag resulting in daytime overheating. The occupant’s daytime thermal sensation is mostly slightly warm to hot. Semi-open and outdoor shaded spaces become a way to cope with the daytime overheating period. Occupants frequently use indoor spaces during the night when thermal sensation ranges between neutral to slightly cool. Finally, from the findings an interpretational graph has been developed relating indoor thermal environment with occupant’s living pattern within a traditional timber house. Findings will contribute to professionals and policy-makers developing architectural design strategies that may impact the occupant’s well-being in future.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3