Cortical Neurons Adjust the Action Potential Onset Features as a Function of Stimulus Type

Author:

Aldohbeyb Ahmed A.1ORCID,Alokaily Ahmad O.1ORCID

Affiliation:

1. Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia

Abstract

Pyramidal neurons and interneurons play critical roles in regulating the neuronal activities in the mammalian cortex, where they exhibit different firing patterns. Pyramidal neurons mainly exhibit regular-spiking firing patterns, while interneurons have fast-spiking firing patterns. Cortical neurons have distinct action potential onset dynamics, in which the evoked action potential is rapid and highly variable. However, it is still unclear how cortical regular-spiking and fast-spiking neurons discriminate between different types of stimuli by changing their action potential onset parameters. Thus, we used intracellular recordings of regular-spiking and fast-spiking neurons, taken from layer 2/3 in the somatosensory cortex of adult mice, to investigate changes in the action potential waveform in response to two distinct stimulation protocols: the conventional step-and-hold and frozen noise. The results show that the frozen noise stimulation paradigm evoked more rapid action potential with lower threshold potential in both neuron types. Nevertheless, the difference in the action potential rapidity in response to different stimuli was significant in regular-spiking pyramidal neurons while insignificant in fast-spiking interneurons. Furthermore, the threshold variation was significantly higher for regular-spiking neurons than for fast-spiking neurons. Our findings demonstrate that different types of cortical neurons exhibit various onset dynamics of the action potentials, implying that different mechanisms govern the initiation of action potentials across cortical neuron subtypes.

Funder

Deputyship for Research and Innovation of the Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3