A Hybrid Human Activity Recognition Method Using an MLP Neural Network and Euler Angle Extraction Based on IMU Sensors

Author:

Mao Yaxin1,Yan Lamei2,Guo Hongyu1,Hong Yujie1,Huang Xiaocheng13ORCID,Yuan Youwei13

Affiliation:

1. School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

2. School of Media and Design, Hangzhou Dianzi University, Hangzhou 310018, China

3. Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China

Abstract

Inertial measurement unit (IMU) technology has gained popularity in human activity recognition (HAR) due to its ability to identify human activity by measuring acceleration, angular velocity, and magnetic flux in key body areas like the wrist and knee. It has propelled the extensive application of HAR across various domains. In the healthcare sector, HAR finds utility in monitoring and assessing movements during rehabilitation processes, while in the sports science field, it contributes to enhancing training outcomes and preventing exercise-related injuries. However, traditional sensor fusion algorithms often require intricate mathematical and statistical processing, resulting in higher algorithmic complexity. Additionally, in dynamic environments, sensor states may undergo changes, posing challenges for real-time adjustments within conventional fusion algorithms to cater to the requirements of prolonged observations. To address these limitations, we propose a novel hybrid human pose recognition method based on IMU sensors. The proposed method initially calculates Euler angles and subsequently refines them using magnetometer and gyroscope data to obtain the accurate attitude angle. Furthermore, the application of FFT (Fast Fourier Transform) feature extraction facilitates the transition of the signal from its time-based representation to its frequency-based representation, enhancing the practical significance of the data. To optimize feature fusion and information exchange, a group attention module is introduced, leveraging the capabilities of a Multi-Layer Perceptron which is called the Feature Fusion Enrichment Multi-Layer Perceptron (GAM-MLP) to effectively combine features and generate precise classification results. Experimental results demonstrated the superior performance of the proposed method, achieving an impressive accuracy rate of 96.13% across 19 different human pose recognition tasks. The proposed hybrid human pose recognition method is capable of meeting the demands of real-world motion monitoring and health assessment.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3