Research on Conditions and Influence Factors of an Acoustic Wave Acting as a Plane Wave in Tire Acoustic Cavity

Author:

Hu Xiaojun1ORCID,Liu Xiandong2,Shan Yingchun2,He Tian2ORCID

Affiliation:

1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

2. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Tire acoustic cavity resonance noise (TACRN) contributes significantly to the interior noise of electric cars and passenger cars with lower powertrain noise, which affects the comfort of the ride. To suppress TACRN effectively, it is crucial to clarify the characteristics of TACRN. In previous studies, the acoustic wave in the tire acoustic cavity is straightforwardly assumed to be the plane wave for convenience. In fact, there exist strict conditions for the acoustic wave propagating in the pipeline to act as a plane wave. The aim of this paper is to make the characteristics and evolution of acoustic waves in tire acoustic cavities clear. To do so, a simplified model of the tire cavity is established, and the sound field distribution and the acoustic wave propagation characteristics in the tire cavity are analyzed based on the theory of acoustic waveguide. Then, the existence ranges of higher-order waves (non-plane waves), the conditions of an acoustic wave evolving into a plane wave, and the frequency range of a plane wave are investigated. Finally, the characteristics and evolution law of an acoustic wave in a tire acoustic cavity are obtained. The work in this paper may deepen the understanding of the characteristics and mechanism of acoustic waves in the tire cavity and be helpful and meaningful for analyzing and suppressing TACRN. Therefore, it is of practical significance to reduce TACRN transmitted to the vehicle and improve the sound quality inside the vehicle.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on acoustic-structural coupling model and tire parameters of tire acoustic cavity resonance noise;Journal of Low Frequency Noise, Vibration and Active Control;2023-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3