Movement Time and Subjective Rating of Difficulty in Real and Virtual Pipe Transferring Tasks

Author:

Li Kai Way12ORCID,Nguyen Thi Lan Anh2

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

2. Department of Industrial Management, Chung Hua University, Hsinchu City 30012, Taiwan

Abstract

An experiment was performed to investigate the movement time (MT) and subjective rating of difficulty for real and virtual pipe transferring tasks. Thirty adults joined as human participants. The HoloPipes app in a Microsoft® Hololens 2 augmented reality (AR) device was adopted to generate virtual pipes. The participants performed pipe transferring trials, from one location to another on a workbench, in both lateral and anterior–posterior directions. For the lateral transferring tasks, pipes in three diameters with three transferring distances and two origins were tested. For the anterior–posterior transferring tasks, pipes with a diameter of 2.2 cm with three transferring distances and two origins were tested. It was found that the MT of transferring a virtual pipe was significantly (p < 0.0001) shorter than that of transferring a real pipe. Moreover, male participants transferred the pipe significantly (p < 0.0001) faster than their female counterparts. Thus, the hypothesis that transferring a virtual pipe is less efficient than transferring a real pipe was rejected. It was also found that the MT of transferring both a real and a virtual object was dependent upon gender, handedness, and the transferring direction. In addition, the subjective rating of difficulty in pipe transferring is positively correlated (r = 0.48, p < 0.0001) with the MT. Based on Fitts’ law, additive MT models were proposed. These models could be used to predict the MT between handling real and virtual pipes under gender, handedness, and transferring direction conditions.

Funder

National Council of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3