Set-Based Group Search Optimizer for Stochastic Many-Objective Optimal Power Flow

Author:

Zheng Jiehui1,Tao Mingming1,Li Zhigang1ORCID,Wu Qinghua1

Affiliation:

1. School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China

Abstract

The conventional optimal power flow (OPF) is confronted with challenges in tackling more than three objectives and the stochastic characteristics due to the uncertainty and intermittence of the RESs. However, there are few methods available that simultaneously address high-dimensional objective optimization and uncertainty handling. This paper proposes a set-based group search optimizer (SetGSO) to tackle the stochastic many-objective optimal power flow (MaOPF) of power systems penetrated with renewable energy sources. The proposed SetGSO depicts the original stochastic variables by set-based individuals under the evolutionary strategy of the basic GSO, without using repeated sampling or probabilistic information. Consequently, two metrics, hyper-volume and average imprecision, are introduced to transform the stochastic MaOPF into a deterministic bi-objective OPF, guaranteeing a much superior Pareto-optimal front. Finally, our method was evaluated on three modified bus systems containing renewable energy sources, and compared with the basic GSO using Monte Carlo sampling (GSO-MC) and a set-based genetic algorithm (SetGA) in solving the stochastic MaOPF. The numerical results demonstrate a saving of 90% of the computation time in the proposed SetGSO method compared to sampling-based approaches and it achieves improvements in both the hyper-volume and average imprecision indicators, with a maximum enhancement of approximately 30% and 7% compared to SetGA.

Funder

Natural Science Foundation of China

Natural Science Foundation of Guangdong Province, China

CSEE

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3