Affiliation:
1. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Abstract
Malicious websites detection is one of the cyber-security tasks that protects sensitive information such as credit card details and login credentials from attackers. Machine learning (ML)-based methods have been commonly used in several applications of cyber-security research. Although there are some methods and approaches proposed in the state-of-the-art studies, the advancement of the most effective solution is still of research interest and needs to be improved. Recently, decision fusion methods play an important role in improving the accuracy of ML methods. They are broadly classified based on the type of fusion into a voting decision fusion technique and a divide and conquer decision fusion technique. In this paper, a decision fusion ensemble learning (DFEL) model is proposed based on voting technique for detecting malicious websites. It combines the predictions of three effective ensemble classifiers, namely, gradient boosting (GB) classifier, extreme gradient boosting (XGB) classifier, and random forest (RF) classifier. We use these classifiers because their advantages to perform well for class imbalanced and data with statistical noises such as in the case of malicious websites detection. A weighted majority-voting rule is utilized for generating the final decisions of used classifiers. The experimental results are conducted on a publicly available large dataset of malicious and benign websites. The comparative study exposed that the DFEL model achieves high accuracies, which are 97.25% on average of 10-fold cross-validation test and 98.50% on a holdout of 30% test set. This confirms the ability of proposed approach to improve the detection rate of malicious websites.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference52 articles.
1. Analysis of cyber security knowledge gaps based on cyber security body of knowledge;Catal;Educ. Inf. Technol.,2023
2. A comparative study on 4G and 5G technology for wireless applications;Gopal;IOSR J. Electron. Commun. Eng.,2015
3. Bensberg, F., Buscher, G., and Czarnecki, C. (2019). Advances in Consulting Research: Recent Findings Practical Cases, Springer.
4. Bayarçelik, E.B., and Bumin Doyduk, H.B. (2020). Digital Business Strategies in Blockchain Ecosystems: Transformational Design Future of Global Business, Springer.
5. Secure data transmission and trustworthiness judgement approaches against cyber-physical attacks in an integrated data-driven framework;Jiang;IEEE Trans. Syst. Man Cybern. Syst.,2022