Disease Severity Index in Parkinson’s Disease Based on Self-Organizing Maps

Author:

Araújo Suellen M.1,Nery Sabrina B. M.1,Magalhães Bianca G.2,Almeida Kelson James3,Gaspar Pedro D.24ORCID

Affiliation:

1. Department of Medical Sciences, University of Beira Interior, Rua Marquês de D’Ávila e Bolama, 6201-001 Covilhã, Portugal

2. Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D’Ávila e Bolama, 6201-001 Covilhã, Portugal

3. Department of Neurology, Federal University of Piaui, Teresina 64049-550, Brazil

4. C-MAST—Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D’Ávila e Bolama, 6201-001 Covilhã, Portugal

Abstract

Parkinson’s disease is a progressive neurodegenerative condition whose prevalence has significantly increased. This work proposes the development of a severity index to classify patients from symptoms, mainly motor ones, using an Artificial Neuronal Network (ANN) trained by the Self-Organizing Maps (SOMs) algorithm. The FOX Insight database was used, which offers data in the form of questionnaires answered by patients or caregivers from all over the world, with information regarding this pathology. After pre-processing the data, a set of 597 questionnaires containing 28 defined questions was selected. The symptoms were individually analyzed after mapping and divided into four classes. In class 1, most symptoms were not present. In class 2, the presence of certain symptoms demonstrated early milestones of the disease. In class 3, symptoms related to the patient’s mobility, in particular pain, stand out among the most reported. In class 4, the intense presence of all symptoms is observed. To test the tool, data were used from some of these patients, who answered the same questionnaire at different times (simulating medical appointments). The presented severity index to classify patients allowed identifying the current stage of the disease allowing the follow-up. This AI-based decision-support tool can help medical professionals to predict the evolution of Parkinson’s disease, which can result in longer life quality of patients, in terms of symptoms and medication requirements.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3