Numerical Simulation Study on Frost Heave during the Freezing Phase of Shallow-Buried and Undercut Tunnel Using the Freeze-Sealing Pipe Roof Method

Author:

Duan Yin12,Rong Chuanxin12,Long Wei12ORCID

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Huainan 232001, China

2. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

Abstract

This article begins with the engineering geological conditions and freezing design scheme of the Gongbei Tunnel’s underground excavation section, then applies the mathematical model theory of the horizontal freezing-tunnel-formation freezing temperature field and frost heave displacement field, and builds a coupled two-dimensional finite element calculation model. The development law of the frozen soil curtain and the variation law of frost heave displacement during the freezing phase were studied by comparing on-site observation data. According to the findings of this study, the construction of the artificial frozen curtain is mostly based on two types of freezing tubes that freeze the soil between jacked pipes and seal the water. At 90 days, the thickness of the frozen soil curtain ranges from 2.32 m to 2.58 m, guaranteeing that its strength fulfills water-sealing safety criteria. The distribution and variation of frost heave displacement are highly related to engineering geological circumstances, the freezing scheme, the frozen soil curtain development process, and the pipe curtain structure. The maximum vertical frost heave displacement value at any time is located at the centerline, which is 155.67 mm at 90 d. The numerical simulation findings are acceptable and can potentially be utilized for predicting frost heave in subsequent projects. More research is required to effectively represent complicated working conditions and to develop more exact large-scale numerical models for tunnel excavation, support structure building, and other situations.

Funder

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. National Bureau of Statistics (2022). China Statistical Yearbook, (In Chinese).

2. Demographic Structure, Consumption Structure of Residents and Industrial Upgrading;He;Reg. Econ. Rev.,2023

3. On the limitations of decoupled approach for the seismic behaviour evaluation of shallow multi-propped underground structures embedded in granular soils;Zucca;Eng. Struct.,2020

4. Research progress on safety risk management for large scale geotechnical engineering construction in China;Xiong;Rock Soil Mech.,2018

5. Investigation on the Performance of Pipe Roof Method Adjacent to the Underground Construction;Ma;Geotech. Geol. Eng.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3