Affiliation:
1. College of Information and Cyber Security, People’s Public Security University of China, Beijing 102600, China
Abstract
Vehicular edge computing (VEC) is essential in vehicle applications such as traffic control and in-vehicle services. In the task offloading process of VEC, predictive-mode transmission based on deep learning is constrained by limited computational resources. Furthermore, the accuracy of deep learning algorithms in VEC is compromised due to the lack of edge computing features in algorithms. To solve these problems, this paper proposes a task offloading optimization approach that enables edge servers to store deep learning models. Moreover, this paper proposes the LTransformer, a transformer-based framework that incorporates edge computing features. The framework consists of pre-training, an input module, an encoding–decoding module, and an output module. Compared with four sequential deep learning methods, namely a Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), a Gated Recurrent Unit (GRU), and the Transformer, the LTransformer achieves the highest accuracy, reaching 80.1% on the real dataset. In addition, the LTransformer achieves 0.008 s when predicting a single trajectory, fully satisfying the fundamental requirements of real-time prediction and enabling task offloading optimization.
Funder
Double First-Class Innovation Research Project for People’s Public Security University of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science