Video-Restoration-Net: Deep Generative Model with Non-Local Network for Inpainting and Super-Resolution Tasks

Author:

Zheng Yuanfeng1,Yan Yuchen1,Jiang Hao1

Affiliation:

1. School of Electronic Information, Wuhan University, Wuhan 430072, China

Abstract

Although deep learning-based approaches for video processing have been extensively investigated, the lack of generality in network construction makes it challenging for practical applications, particularly in video restoration. As a result, this paper presents a universal video restoration model that can simultaneously tackle video inpainting and super-resolution tasks. The network, called Video-Restoration-Net (VRN), consists of four components: (1) an encoder to extract features from each frame, (2) a non-local network that recombines features from adjacent frames or different locations of a given frame, (3) a decoder to restore the coarse video from the output of a non-local block, and (4) a refinement network to refine the coarse video on the frame level. The framework is trained in a three-step pipeline to improve training stability for both tasks. Specifically, we first suggest an automated technique to generate full video datasets for super-resolution reconstruction and another complete-incomplete video dataset for inpainting, respectively. A VRN is then trained to inpaint the incomplete videos. Meanwhile, the full video datasets are adopted to train another VRN frame-wisely and validate it against authoritative datasets. We show quantitative comparisons with several baseline models, achieving 40.5042 dB/0.99473 on PSNR/SSIM in the inpainting task, while during the SR task we obtained 28.41 dB/0.7953 and 27.25/0.8152 on BSD100 and Urban100, respectively. The qualitative comparisons demonstrate that our proposed model is able to complete masked regions and implement super-resolution reconstruction in videos of high quality. Furthermore, the above results show that our method has greater versatility both in video inpainting and super-resolution tasks compared to recent models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3