Compensation of the Distorted WDM Signals by Symmetric Dispersion Map with Nonuniform Zero-Crossing Place of Accumulated Dispersion in Midway-OPC System

Author:

Chung Jae-Pil1ORCID,Lee Seong-Real2ORCID

Affiliation:

1. Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea

2. Division of Navigational Information System, Mokpo National Maritime University, Mokpo 58628, Republic of Korea

Abstract

The nonlinear Kerr effect and chromatic dispersion are the fundamental causes of optical signal degradation in single-mode fiber (SMF) and erbium-doped fiber-amplification (EDFA)-based wavelength division multiplexing (WDM) transmission. Dispersion management combined with a midway optical phase conjugator among the technologies for compensating for such optical signal distortion is known to not be limited by the modulation format and multiplexing technology. Optimization of the dispersion map can partially alleviate the capacity and maximum transmission distance limitations of the SMF and EDFA system. In this paper, we propose various types of symmetric dispersion maps in which the position of zero-crossing place of the cumulative dispersion is not constant, and analyze the effect of each dispersion map configuration on 40 Gb/s × 24-channel WDM signal distortion compensation. When designed with the residual dispersion per span (RDPS) around 400 ps/nm, it is confirmed that most of the proposed dispersion maps are more effective in compensating the distorted WDM signal than conventional dispersion map. In particular, we confirm that, among the proposed dispersion maps, the dispersion map in which the RDPS is designed uniformly for all fiber spans can increase the power margin of WDM channel and expand the range of the total residual dispersion in the dispersion-managed link.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3