System-Level Fault Diagnosis for an Industrial Wafer Transfer Robot with Multi-Component Failure Modes

Author:

Lee Inu1ORCID,Park Hyung Jun1ORCID,Jang Jae-Won2,Kim Chang-Woo3,Choi Joo-Ho4ORCID

Affiliation:

1. Department of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si 10540, Republic of Korea

2. Department of Smart Air Mobility, Korea Aerospace University, Goyang-si 10540, Republic of Korea

3. Cymechs, Hwaseong-si 18487, Republic of Korea

4. School of Aerospace & Mechanical Engineering, Korea Aerospace University, Goyang-si 10540, Republic of Korea

Abstract

In the manufacturing industry, robots are constantly operated at high speed, which degrades their performance by the degradation of internal components, eventually reaching failure. To address this issue, a framework for system-level fault diagnosis is proposed, which consists of extracting useful features from the motor control signal acquired during the operation, diagnosing the current health of each component using the features, and estimating the associated degradation in the robot system’s performance. Finally, a maintenance strategy is determined by evaluating how well the system performance is restored by the replacement of each component. The framework is demonstrated using the example of a wafer transfer robot in the semiconductor industry, in which the robot is operated under faults with various severities for two critical components: the harmonic drive and the timing belt. Features are extracted for the motor signal using wavelet packet decomposition, followed by feature selection by considering the trendability and separability of the fault severity. An artificial neural network model and Gaussian process regression are employed for the diagnosis of the components’ health and the system’s performance, respectively.

Funder

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3