Camellia oleifera Fruit Detection Algorithm in Natural Environment Based on Lightweight Convolutional Neural Network

Author:

Li Zefeng1,Kang Lichun1,Rao Honghui1,Nie Ganggang1,Tan Yuhan2,Liu Muhua1

Affiliation:

1. College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China

2. College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China

Abstract

At present, Camellia oleifera fruit harvesting relies on manual labor with low efficiency, while mechanized harvesting could result in bud damage because flowering and fruiting are synchronized. As a prerequisite, rapid detection and identification are urgently needed for high accuracy and efficiency with simple models to realize selective and intelligent harvesting. In this paper, a lightweight detection algorithm YOLOv5s-Camellia based on YOLOv5s is proposed. First, the network unit of the lightweight network ShuffleNetv2 was used to reconstruct the backbone network, and thereby the number of computations and parameters of the model was reduced to increase the running speed for saving computational costs. Second, to mitigate the impact of the lightweight improvement on model detection accuracy, three efficient channel attention (ECA) modules were introduced into the backbone network to enhance the network’s attention to fruit features, and the Concat operation in the neck network was replaced by the Add operation with fewer parameters, which could increase the amount of information under features while maintaining the same number of channels. Third, the Gaussian Error Linear Units (GELU) activation function was introduced to improve the nonlinear characterization ability of the network. In addition, to improve the ability of the network to locate objects in the natural environment, the penalty index was redefined to optimize the bounding box loss function, which can improve the convergence speed and regression accuracy. Furthermore, the final experimental results showed that this model possesses 98.8% accuracy, 5.5 G FLOPs computation, and 6.3 MB size, and the detection speed reached 60.98 frame/s. Compared with the original algorithm, the calculation amount, size, and parameters were reduced by 65.18%, 56.55%, and 57.59%, respectively. The results can provide a technical reference for the development of a Camellia oleifera fruit-harvesting robot.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Jiangxi Provincial Forestry Bureau Camellia oleifera Fruit Research Special Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3