Physics-Based Swab and Surge Simulations and the Machine Learning Modeling of Field Telemetry Swab Datasets

Author:

Mohammad Amir1,Belayneh Mesfin1ORCID,Davidrajuh Reggie1ORCID

Affiliation:

1. Department of Electrical Engineering & Computer Science, University of Stavanger, 4021 Stavanger, Norway

Abstract

Drilling operations are the major cost factor for the oil industry. Appropriately designed operations are essential for successful drilling. Optimized drilling operations also enhance drilling performance and reduce drilling costs. This is achieved by increasing the bit life (minimizing premature bit wear), drilling more quickly, which reduces drilling time, and also reducing tripping operations. This paper is presented in two parts. The first part compares the parametric physics-based swab and surge simulation results obtained from the Bingham plastic, power law, and Robertson–Stiff models. The aim is to show how the model’s predictions deviate from each other. Two 80:20 oil/water ratio (OWR) oil-based drilling fluids and two 90:10 OWR oil-based drilling fluids, 1.96 sg and 2.0 sg, were considered in vertical and deviated wells. Analysis of the simulation results revealed that the deviations depend on the drilling fluid’s physical and rheological parameters as well as the well trajectory. Moreover, the model’s predictions were inconsistent. Data-driven machine learning (ML) modeling is the focus of the second section. Data-driven modeling was performed using both software-generated datasets and field datasets. The results show that the random forest regressor (RF), artificial neural network (ANN), long short-term memory (LSTM), LightGBM, XGBoost, and multivariate regression models predicted the training and test datasets with higher R-squared and minimum mean square error values. Deploying the ML model in real-time applications and the planning phase would lead to potential applications of artificial intelligence for well planning and optimization processes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3