Distribution of Active Faults and Lithospheric Discontinuities in the Himalayan-Tibetan Orogenic Zone Identified by Multiscale Gravity Analysis

Author:

Wu Xiaolong1,Wu Jifeng1,Xiang Yang1,Khan Muhammad Sohail2

Affiliation:

1. School of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China

2. School of Geosciences, China University of Petroleum, Qingdao 266580, China

Abstract

The lithospheric structure of the Tibetan Plateau and its adjacent area is a hot topic in geodynamic research. It is important to reveal the mechanism of crustal deformation and tectonic evolution of the study area. In this study, the techniques of wavelet multiscale decomposition and field edge detection were used to study the discontinuities of the lithosphere revealed by multilevel Bouguer gravity anomalies. Specifically, we evaluated the depth characteristics of the major active faults in the study area and identified 15 deep major faults that cut through the lithosphere. They are Chaman fault, Shyok suture zone, Altyn-Tagh fault, Karakash fault, Karakoram fault, Talas-Fergana fault, Kashgarr-Yeshgar transfer system, Rushan-Pshart suture zone, Sangri-Nacuo fault, Main Frontal thrust, Burmese fold belt, Yadong-Gulu fault, Gaoligong fault, Sagaing fault and Nujiang fault. We have also elucidated the tectonic mechanisms of two famous geodynamic phenomena in the Pamir Plateau. The first is the intense intermediate depth seismicity beneath Pamir-Hindukush. It cannot simply be described as the rupture of a subducted residual plate, which could be divided into two distinct tectonic units. One belongs to the Indian plate, the other to the Eurasian plate. Secondly, the mechanism of intense seismicity confined to the western upper crust of the Pamir Plateau could be explained as significant fragmentation of crustal material. Finally, and most importantly, we summarized the coupling mechanism between deep geodynamics and horizontal deformation as observed by modern geodetic techniques. In the upper mantle, the leading edge of the subducting Indian plate reached the SW boundary of Tarim basin and forms a closed structure in western Himalaya. Then, the Tibetan Plateau underwent a tectonic escape towards the east under the continuous compression between the Indian and Eurasian plates. During the process of tectonic escape, the role of the N–S direction normal faults in the Himalayan tectonic zone is limited.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3