Precise Cadastral Survey of Rural Buildings Based on Wall Segment Topology Analysis from Dense Point Clouds

Author:

Xu Bo12ORCID,Han Zhaochen2,Chen Min2

Affiliation:

1. The Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China

2. The Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China

Abstract

The renewal and updating of the cadastre of real estate is a long and tedious task for land administration, especially for rural buildings that lack unified design and planning. In order to retain the required accuracy of all points in the register, huge extensive manual editing is often required. In this work, a precise cadastral survey approach is proposed using Unmanned Aerial Vehicle (UAV) imagery-based stereo point clouds. To ensure the accuracy and uniqueness of building outer walls, the non-maximum suppression of wall points that can separate noise and avoid repeated extraction is proposed. Meanwhile, the multiple cue weighted RANSAC, considering both point-to-line distance and normal consistency, is proposed to reduce the influence of building attachments and avoid spurious edges. For a better description of wall topology, the wall line segment topology graph (WLTG), which can guide the connection of adjacent lines and support the searching of closed boundaries through the minimum graph loop analysis, is also built. Experimental results show that the proposed method can effectively detect the building vector contours with high precision and correct topology, and the detection completeness and correctness of the edge corners can reach 84.9% and 93.2% when the mean square error is below 10 cm.

Funder

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources Project

National Natural Science Foundation of China

Open Fund of the National Engineering Research Center for Digital Construction and Evaluation Technology of Urban Rail Transit

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3