Fully Automatic Thoracic Cavity Segmentation in Dynamic Contrast Enhanced Breast MRI Using Deep Convolutional Neural Networks

Author:

Berchiolli Marco1,Wolfram Susann23ORCID,Balachandran Wamadeva4,Gan Tat-Hean1ORCID

Affiliation:

1. Brunel Innovation Centre, Brunel University London, Uxbridge UB8 3PH, UK

2. Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK

3. School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, USA

4. Electronic and Computer Engineering Department, Brunel University London, Uxbridge UB8 3PH, UK

Abstract

Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is regarded as one of the main diagnostic tools for breast cancer. Several methodologies have been developed to automatically localize suspected malignant breast lesions. Changes in tissue appearance in response to the injection of the contrast agent (CA) are indicative of the presence of malignant breast lesions. However, these changes are extremely similar to the ones of internal organs, such as the heart. Thus, the task of chest cavity segmentation is necessary for the development of lesion detection. In this work, a data-efficient approach is proposed, to automatically segment breast MRI data. Specifically, a study on several UNet-like architectures (Dynamic UNet) based on ResNet is presented. Experiments quantify the impact of several additions to baseline models of varying depth, such as self-attention and the presence of a bottlenecked connection. The proposed methodology is demonstrated to outperform the current state of the art both in terms of data efficiency and in terms of similarity index when compared to manually segmented data.

Funder

UK Research and Innovation

Brunel University London

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3