Improvement of the Performance of Scattering Suppression and Absorbing Structure Depth Estimation on Transillumination Image by Deep Learning

Author:

Dang Nguyen Ngoc An12ORCID,Huynh Hoang Nhut12ORCID,Tran Trung Nghia12ORCID

Affiliation:

1. Laboratory of Laser Technology, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72506, Vietnam

2. Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc, Ho Chi Minh City 71308, Vietnam

Abstract

The development of optical sensors, especially with regard to the improved resolution of cameras, has made optical techniques more applicable in medicine and live animal research. Research efforts focus on image signal acquisition, scattering de-blur for acquired images, and the development of image reconstruction algorithms. Rapidly evolving artificial intelligence has enabled the development of techniques for de-blurring and estimating the depth of light-absorbing structures in biological tissues. Although the feasibility of applying deep learning to overcome these problems has been demonstrated in previous studies, limitations still exist in terms of de-blurring capabilities on complex structures and the heterogeneity of turbid medium, as well as the limit of accurate estimation of the depth of absorptive structures in biological tissues (shallower than 15.0 mm). These problems are related to the absorption structure’s complexity, the biological tissue’s heterogeneity, the training data, and the neural network model itself. This study thoroughly explores how to generate training and testing datasets on different deep learning models to find the model with the best performance. The results of the de-blurred image show that the Attention Res-UNet model has the best de-blurring ability, with a correlation of more than 89% between the de-blurred image and the original structure image. This result comes from adding the Attention gate and the Residual block to the common U-net model structure. The results of the depth estimation show that the DenseNet169 model shows the ability to estimate depth with high accuracy beyond the limit of 20.0 mm. The results of this study once again confirm the feasibility of applying deep learning in transmission image processing to reconstruct clear images and obtain information on the absorbing structure inside biological tissue. This allows the development of subsequent transillumination imaging studies in biological tissues with greater heterogeneity and structural complexity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3