Non-Enzymatic Formation of N-acetylated Amino Acid Conjugates in Urine

Author:

Jacobs Jano1ORCID,van Sittert Cornelia Gertina Catharina Elizabeth2ORCID,Mienie Lodewyk Japie1,Dercksen Marli1,Opperman Monique1ORCID,Vorster Barend Christiaan1ORCID

Affiliation:

1. Centre for Human Metabolomics, North-West University, Potchefstroom 2520, South Africa

2. Laboratory for Applied Molecular Modelling, Research Focus Area for Chemical Resource Beneficiation, North-West University, Potchefstroom 2520, South Africa

Abstract

Unknown N-acylated amino acid (N-AAA) conjugates have been detected in maple syrup urine disease (MSUD) and other inborn errors of metabolism (IEMs). This study aimed to elucidate the mechanism behind the formation of urinary N-AAA conjugates. Liquid–liquid extraction was employed to determine the enantiomeric composition of N-AAA conjugates, followed by liberation of conjugated amino acids through acid hydrolysis. Gas chromatography–mass spectrometry (GC–MS) was used to separate amino acid enantiomers. In vitro experiments were conducted to test the non-enzymatic formation of N-AAA conjugates from 2-keto acids and ammonia, with molecular modelling used to assess possible reaction mechanisms. Adequate amounts of N-AAA conjugates were obtained via organic acid extraction without concurrent extraction of native amino acids, and hydrolysis was complete without significant racemisation. GC–MS analysis successfully distinguished amino acid enantiomers, with some limitations observed for L-isoleucine and D-alloisoleucine. Furthermore, investigation of racemic N-AAA conjugates from an MSUD case confirmed its non-enzymatic origin. These findings highlight the value of employing chiral strategy and molecular modelling to investigate the origin of unknown constituents in biological samples. Additionally, these conjugates warrant further investigation as potential factors contributing to MSUD and other IEMs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3