Adsorption of Mixed Dispersions of Silica Nanoparticles and an Amphiphilic Triblock Copolymer at the Water–Vapor Interface

Author:

Carbone Carlo1,Rubio-Bueno Alejandra1,Ortega Francisco12ORCID,Rubio Ramón G.12ORCID,Guzmán Eduardo12ORCID

Affiliation:

1. Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain

2. Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain

Abstract

This study investigates the surface modification of hydrophilic silica nanoparticles by non-chemical adsorption of an amphiphilic triblock copolymer, Pluronic F-127, and elucidates its influence on the interfacial dispersion properties. The interaction between Pluronic F-127 and silica nanoparticles drives the formation of copolymer-decorated particles with increased hydrodynamic diameter and reduced effective charge as the copolymer concentration increases, while the opposite effect occurs as the particle concentration increases at a fixed polymer concentration. This indicates that increasing the copolymer concentration leads to an increase in the coating density, whereas increasing the particle concentration leads to a decrease. This is of paramount importance for modulating the reorganization of the Pluronic F-127 shell upon adsorption at fluid–fluid interfaces and, thus, the adsorption of the decorated nanoparticles at the interface and the rheological properties of the obtained layers. In fact, the relationship between copolymer concentration and interfacial tension, as well as the mechanical response of the interface, mirrors the patterns observed in Pluronic F-127 solutions, and only a shift mediated by the Pluronic F-127 concentration is found. This suggests that the presence of particles limits the space available for Pluronic F-127 molecules to reorganize at the interface but does not significantly affect the interfacial behavior of the particle-laden interface.

Funder

MICIN

European Innovative Training Network-Marie Skłodowska-Curie Action NanoPaInt

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3