An Improved Impact Damage Monitoring Method for High-Speed Trains Using Lamb Waves and Multi-Task Learning
-
Published:2023-09-12
Issue:18
Volume:13
Page:10235
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Yang Jinsong1, Gan Zhiqiang1, Zhang Xiaozhen1, Wang Tiantian1ORCID, Xie Jingsong1ORCID
Affiliation:
1. School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China
Abstract
High-speed trains may be subjected to various forms of physical impacts during long-term operation, causing structural damage and endangering driving safety. Therefore, impact damage monitoring remains a daunting challenge for the stable operation of high-speed train structures. The existing methods cannot simultaneously detect the location and severity of impact damage, which poses challenges to structural integrity assessment and preventive maintenance. This article proposes an impact damage monitoring method based on multi-task 2D-CNN. Sensor data fusion is performed using a 2D image processing method to convert a 1D impact damage signal into a 2D grayscale image. The fused grayscale image contains information related to the location and severity of impact damage. A damage detection framework was established using multi-task 2D-CNN for feature extraction, impact location classification, and impact energy quantification. This model can learn the commonalities and characteristics of each task by sharing network structure and parameters and can effectively improve the accuracy of each task. Compared with single-task learning, multi-task learning performs better on the metrics of the impact location task recognizing the impact energy task and reduces the training time by 30.83%. With a reduced number of samples, the performance of multi-task learning is more stable and can still effectively identify the location and severity of impact damage.
Funder
Joint Funds of the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference35 articles.
1. Railway monitoring system using optical fiber grating accelerometers;Kinet;Smart Mater. Struct.,2018 2. Khodaei, Z.S., Aliabadi, M.H.F., Shen, Y., Cesnik, C.E.S., Banerjee, S., Shrestha, S., Ostachowicz, W.M., Malinowski, P.H., Wandowski, T., and Rocha, B. (2017). Structural Health Monitoring for Advanced Composite Structures, World Scientific Publishing. 3. Damage localization and identification in WGF/epoxy composite laminates by using Lamb waves: Experiment and simulation;Yang;Compos. Struct.,2017 4. Su, C., Jiang, M., Liang, J., Tian, A., Sun, L., Zhang, L., Zhang, F., and Sui, Q. (2020). Damage Localization of Composites Based on Difference Signal and Lamb Wave Tomography. Materials, 13. 5. Impact sensor network for detection of hypervelocity impacts on spacecraft;Janovsky;Acta Astronaut.,2007
|
|