Dynamic Measuring Method of Laser Beam Incident Angle for Laser Doppler Vibrometer

Author:

Luo Yingchao1ORCID,An Huazhen1,Li Xiaobing1,Jing Genqiang1ORCID

Affiliation:

1. Research Institute of Highway Ministry of Transport, Beijing 100088, China

Abstract

Accurately measuring the incident angle of the laser Doppler vibrometer (LDV) laser beam is crucial for calculating the accurate dynamic response of a target. Nonetheless, conventional measuring methods may encounter limitations due to spatial constraints. To address this issue, a novel high-precision dynamic measuring method is proposed based on the measuring principle of LDV. Furthermore, a compact dynamic measuring device is constructed to facilitate this method. The proposed method involves the simulation of various tangential velocities utilizing a high precision rotating disk system. Subsequently, the laser beam incident angle is computed based on the projection relationship established between the average value of LDV measurements and the simulated velocities. To validate the feasibility of the dynamic measuring method and the correctness of the obtained incident angle, the paper compares this angle with that obtained through a conventional laser beam measuring method and device. This paper analyzes four key factors that may affect the angle measuring results theoretically and experimentally: environmental noise, laser spot position error, roll angle, and pitch angle of the rotating disk. The results indicate that the laser spot position error and the pitch angle of the rotating disk are more influential than the other two factors. Corresponding optimization measures are also proposed to improve the measuring accuracy.

Funder

Fundamental Research Funds for Central Public Welfare Research Institutes of China

China Postdoctoral Science Foundation

Pilot Program for Advanced Transportation Systems of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3