QZRAM: A Transparent Kernel Memory Compression System Design for Memory-Intensive Applications with QAT Accelerator Integration

Author:

Gao Chi1,Xu Xiaofei2,Yang Zhizou3,Lin Liwei45,Li Jian3ORCID

Affiliation:

1. Fifteen Department, Chengdu Aircraft Design Institute, Chengdu 610041, China

2. Electronic Department, China Aeronautical Radio Electronic Research Institute, Shanghai 200233, China

3. Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai 200240, China

4. Fujian Key Laboratory of Big Data Mining and Applications, Fuzhou 350118, China

5. School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China

Abstract

In recent decades, memory-intensive applications have experienced a boom, e.g., machine learning, natural language processing (NLP), and big data analytics. Such applications often experience out-of-memory (OOM) errors, which cause unexpected processes to exit without warning, resulting in negative effects on a system’s performance and stability. To mitigate OOM errors, many operating systems implement memory compression (e.g., Linux’s ZRAM) to provide flexible and larger memory space. However, these schemes incur two problems: (1) high-compression algorithms consume significant CPU resources, which inevitably degrades application performance; and (2) compromised compression algorithms with low latency and low compression ratios result in insignificant increases in memory space. In this paper, we propose QZRAM, which achieves a high-compression-ratio algorithm without high computing consumption through the integration of QAT (an ASIC accelerator) into ZRAM. To enhance hardware and software collaboration, a page-based parallel write module is introduced to serve as a more efficient request processing flow. More importantly, a QAT offloading module is introduced to asynchronously offload compression to the QAT accelerator, reducing CPU computing resource consumption and addressing two challenges: long CPU idle time and low usage of the QAT unit. The comprehensive evaluation validates that QZRAM can reduce CPU resources by up to 49.2% for the FIO micro-benchmark, increase memory space (1.66×) compared to ZRAM, and alleviate the memory overflow phenomenon of the Redis benchmark.

Funder

NSFC

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3