Abstract
Lamb wave-based damage detection for large-scale composites is one of the most prosperous structural health monitoring technologies for aircraft structures. However, the temperature has a significant effect on the amplitude and phase of the Lamb wave signal so that temperature compensation is always the focus problem. Especially, it is difficult to identify the damage in the aircraft structures when the temperature is not uniform. In this paper, a compensation method for Lamb wave-based damage detection within a non-uniform temperature field is proposed. Hilbert transform and Levenberg-Marquardt optimization algorithm are developed to extract the amplitude and phase variation caused by the change of temperature, which is used to establish a data-driven model for reconstructing the reference signal at a certain temperature. In the temperature compensation process, the current Lamb wave signal of each exciting-sensing path under the estimated structural condition is substituted into the data-driven model to identify an interpolated initial temperature field, which is further processed by an outlier removing algorithm to eliminate the effect of damage and get the actual non-uniform temperature field. Temperature compensation can be achieved by reconstructing the reference signals within the identified non-uniform temperature field, which are used to compare with the current acquired signals for damage imaging. Both simulation and experiment were conducted to verify the feasibility and effectiveness of the proposed non-uniform temperature field identification and compensation technique for Lamb wave-based structural health monitoring.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献