Author:
de Lima Ribeiro Andréa,Artlett Christopher,Pask Helen
Abstract
The design and operation of a custom-built LIDAR-compatible, four-channel Raman spectrometer integrated to a 532 nm pulsed laser is presented. The multichannel design allowed for simultaneous collection of Raman photons at two spectral regions identified as highly sensitive to changes in water temperature. For each of these spectral bands, the signals having polarization parallel to (∥) and perpendicular to (⟂), the excitation polarization were collected. Four independent temperature markers were calculated from the Raman signals: two-colour(∥), two-colour(⟂), depolarization(A) and depolarization(B). A total of sixteen datasets were analysed for one ultrapure (Milli-Q) and three samples of natural water. Temperature accuracies of ±0.4 °C–±0.8 °C were achieved using the two-colour(∥) marker. When multiple linear regression models were constructed (linear combination) utilizing all simultaneously acquired temperature markers, improved accuracies of ±0.3 °C–±0.7 °C were achieved.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献