IKAR: An Interdisciplinary Knowledge-Based Automatic Retrieval Method from Chinese Electronic Medical Record

Author:

Zhao Yueming,Hu Liang,Chi Ling

Abstract

To date, information retrieval methods in the medical field have mainly focused on English medical reports, but little work has studied Chinese electronic medical reports, especially in the field of obstetrics and gynecology. In this paper, a dataset of 180,000 complete Chinese ultrasound reports in obstetrics and gynecology was established and made publicly available. Based on the ultrasound reports in the dataset, a new information retrieval method (IKAR) is proposed to extract key information from the ultrasound reports and automatically generate the corresponding ultrasound diagnostic results. The model can both extract what is already in the report and analyze what is not in the report by inference. After applying the IKAR method to the dataset, it is proved that the method could achieve 89.38% accuracy, 91.09% recall, and 90.23% F-score. Moreover, the method achieves an F-score of over 90% on 50% of the 10 components of the report. This study provides a quality dataset for the field of electronic medical records and offers a reference for information retrieval methods in the field of obstetrics and gynecology or in other fields.

Funder

National Key R&D Plan of China

National Sci-Tech Support Plan of China

National Natural Science Foundation of China

Youth Science Foundation of Jilin Province of China

Youth SciTech Innovation Leader and Team Project of Jilin Province of China

Key Technology Innovation Cooperation Project of Government and University for the whole Industry Demonstration, China

Key scientific and technological R&D Plan of Jilin Province of China

Project of Jilin Province Development and Reform Commission, China

Publisher

MDPI AG

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An innovation Proving of Knowledge Bases for Automated Reasoning for Information Analysis;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

2. Automatic retrieval of health case reports for public needs using deep learning techniques;Aslib Journal of Information Management;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3