Abstract
The estimation of an image geo-site solely based on its contents is a promising task. Compelling image labelling relies heavily on contextual information, which is not as simple as recognizing a single object in an image. An Auto-Encode-based support vector machine approach is proposed in this work to estimate the image geo-site to address the issue of misclassifying the estimations. The proposed method for geo-site estimation is conducted using a dataset consisting of 125 classes of various images captured within 125 countries. The proposed work uses a convolutional Auto-Encode for training and dimensionality reduction. After that, the acquired preprocessed input dataset is further processed by a multi-label support vector machine. The performance assessment of the proposed approach has been accomplished using accuracy, sensitivity, specificity, and F1-score as evaluation parameters. Eventually, the proposed approach for image geo-site estimation presented in this article outperforms Auto-Encode-based K-Nearest Neighbor and Auto-Encode-Random Forest methods.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献