Explainabilty Comparison between Random Forests and Neural Networks—Case Study of Amino Acid Volume Prediction

Author:

De Fazio RobertaORCID,Di Giovannantonio RosyORCID,Bellini EmanueleORCID,Marrone StefanoORCID

Abstract

As explainability seems to be the driver for a wiser adoption of Artificial Intelligence in healthcare and in critical applications, in general, a comprehensive study of this field is far from being completed. On one hand, a final definition and theoretical measurements of explainability have not been assessed, yet, on the other hand, some tools and frameworks for the practical evaluation of this feature are now present. This paper aims to present a concrete experience in using some of these explainability-related techniques in the problem of predicting the size of amino acids in real-world protein structures. In particular, the feature importance calculation embedded in Random Forest (RF) training is compared with the results of the Eli-5 tool applied to the Neural Network (NN) model. Both the predictors are trained on the same dataset, which is extracted from Protein Data Bank (PDB), considering 446 myoglobins structures and process it with several tools to implement a geometrical model and perform analyses on it. The comparison between the two models draws different conclusions about the residues’ geometry and their biological properties.

Publisher

MDPI AG

Subject

Information Systems

Reference30 articles.

1. Industry 4.0 and Health: Internet of Things, Big Data and Cloud Computing for Healthcare 4.0;Aceto;J. Ind. Inf. Integr.,2020

2. On big data, Artificial Intelligence and smart cities;Allam;Cities,2019

3. Deep reinforcement learning framework for autonomous driving;Abdou;Electron. Imaging,2017

4. The inevitable application of big data to health care;Murdoch;JAMA,2013

5. Support vector machine with adaptive parameters in financial time series forecasting;Cao;IEEE Trans. Neural Netw.,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3