Using Adaptive Zero-Knowledge Authentication Protocol in VANET Automotive Network

Author:

Kalmykov Igor AnatolyevichORCID,Olenev Aleksandr AnatolyevichORCID,Kalmykova Natalia Igorevna,Dukhovnyj Daniil VyacheslavovichORCID

Abstract

One of the most important components of intelligent transportation systems (ITS) is the automotive self-organizing VANET network (vehicular ad hoc network). Its nodes are vehicles with specialized onboard units (OBU) installed on them. Such a network can be subject to various attacks. To reduce the effectiveness of a number of attacks on the VANET, it is advisable to use authentication protocols. Well-known authentication protocols support a security policy with full trust in roadside unit (RSU) base stations. The disadvantage of these authentication protocols is the ability of the RSU to track the route of the vehicle. This leads to a violation of the privacy and anonymity of the vehicle’s owner. To eliminate this drawback, the article proposes an adaptive authentication protocol. An advantage of this protocol is the provision of high imitation resistance without using symmetric and asymmetric ciphers. This result has been achieved by using a zero-knowledge authentication protocol. A scheme for adapting the protocol parameters depending on the intensity of the user’s traffic has been developed for the proposed protocol. The scientific novelty of this solution is to reduce time spent on authentication without changing the protocol execution algorithm by reducing the number of modular exponentiation operations when calculating true and “distorted” digests of the prover and verifying the correctness of responses, as well as by reducing the number of responses. Authentication, as before, takes place in one round without changing the bit depth of the modulus used in the protocol. To evaluate the effectiveness of the adaptive authentication protocol, the VANET model was implemented using NS-2. The obtained research results have shown that the adaptation of the authentication protocol in conditions of increased density of vehicles on the road makes it possible to increase the volume of data exchange between OBU and RSU by reducing the level of confidentiality. In addition, a mechanism for verifying the authority of the vehicle’s owner for provided services has been developed. As a result of the implementation of this mechanism, vehicle registration sites (VRS) calculate the public key of the vehicle without using encryption and provide necessary services to the owner.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Information Systems

Reference40 articles.

1. Van Audenhove, F., and Korniichuk, O. (2014). Future of Urban Mobility 2.0, UITP.

2. Anand, P., Chilamkurti, N., Daniel, A., and Rho, S. (2017). Intelligent Vehicular Networks and Communications Fundamentals, Architectures and Solutions, Elsevier Inc.

3. Bi-Level Optimization as a Tool for Implementation of Intelligent Transportation Systems;Stoilova;Cybern. Inf. Technol.,2017

4. Aung, N., Zhang, W., Dhelim, S., and Ai, Y. (2018). Accident prediction system based on hidden Markov model for vehicular ad-hoc network in urban environments. Information, 9.

5. Modeling and Topological Properties of a V2I Sub Network in VANET Based on a Complex Network;Zhang;Cybern. Inf. Technol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3