A Novel SDWSN-Based Testbed for IoT Smart Applications

Author:

Al-Hamid Duaa Zuhair1ORCID,Karegar Pejman A.1,Chong Peter Han Joo1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Auckland University of Technology (AUT), Auckland 1010, New Zealand

Abstract

Wireless sensor network (WSN) environment monitoring and smart city applications present challenges for maintaining network connectivity when, for example, dynamic events occur. Such applications can benefit from recent technologies such as software-defined networks (SDNs) and network virtualization to support network flexibility and offer validation for a physical network. This paper aims to present a testbed-based, software-defined wireless sensor network (SDWSN) for IoT applications with a focus on promoting the approach of virtual network testing and analysis prior to physical network implementation to monitor and repair any network failures. Herein, physical network implementation employing hardware boards such as Texas Instruments CC2538 (TI CC2538) and TI CC1352R sensor nodes is presented and designed based on virtual WSN- based clustering for stationary and dynamic networks use cases. The key performance indicators such as evaluating node (such as a gateway node to the Internet) connection capability based on packet drop and energy consumption virtually and physically are discussed. According to the test findings, the proposed software-defined physical network benefited from “prior-to-implementation” analysis via virtualization, as the performance of both virtual and physical networks is comparable.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UAV-enabled software defined data collection from an adaptive WSN;Wireless Networks;2024-04-29

2. Modelling and Implementation Tools for SDWSN Smart Applications;2023 28th Asia Pacific Conference on Communications (APCC);2023-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3