Intelligent Unsupervised Network Traffic Classification Method Using Adversarial Training and Deep Clustering for Secure Internet of Things

Author:

Zhang Weijie1,Zhang Lanping2,Zhang Xixi2,Wang Yu2,Liu Pengfei2,Gui Guan2ORCID

Affiliation:

1. Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract

Network traffic classification (NTC) has attracted great attention in many applications such as secure communications, intrusion detection systems. The existing NTC methods based on supervised learning rely on sufficient labeled datasets in the training phase, but for most traffic datasets, it is difficult to obtain label information in practical applications. Although unsupervised learning does not rely on labels, its classification accuracy is not high, and the number of data classes is difficult to determine. This paper proposes an unsupervised NTC method based on adversarial training and deep clustering with improved network traffic classification (NTC) and lower computational complexity in comparison with the traditional clustering algorithms. Here, the training process does not require data labels, which greatly reduce the computational complexity of the network traffic classification through pretraining. In the pretraining stage, an autoencoder (AE) is used to reduce the dimension of features and reduce the complexity of the initial high-dimensional network traffic data features. Moreover, we employ the adversarial training model and a deep clustering structure to further optimize the extracted features. The experimental results show that our proposed method has robust performance, with a multiclassification accuracy of 92.2%, which is suitable for classification with a large number of unlabeled data in actual application scenarios. This paper only focuses on breakthroughs in the algorithm stage, and future work can be focused on the deployment and adaptation in practical environments.

Funder

State Key Laboratory of Millimeter Waves

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3