Affiliation:
1. Faculty 2: School of Engineering—Technology and Life, HTW Berlin University of Applied Sciences, Wilhelminenhofstraße 75A, 12459 Berlin, Germany
Abstract
Wire arc additive manufacturing (WAAM) and laser-based powder bed fusion (L-PBF) are additive manufacturing (AM) processes that allow the manufacturing of complex part geometries. The manufacturing of AM parts does not result in high-quality functional surfaces; therefore, postprocessing such as milling is usually required. For L-PBF parts, the support structures and, for WAAM parts, the undulating surface are usually removed after AM processes. These two application-related cases are investigated in this work, with the conclusion that support structure milling and the milling of the surface of WAAM parts lead to the dimensionally increased wear of milling tools in comparison to milling of solid material.