PowerBridge: Covert Air-Gap Exfiltration/Infiltration via Smart Plug

Author:

Liang Yongyu12,Shan Hong12,Luo Zelin1,Qi Lanlan12,Xie Yi12

Affiliation:

1. College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China

2. Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, Hefei 230037, China

Abstract

Power lines are commonly utilized for energy transmission, and they serve as a conduit for data exfiltration or infiltration in some specific scenarios. This paper explores the feasibility of establishing bidirectional communication between a modified plug and the equipment power line within an air-gapped network organization and with external entities. Bidirectional air-gap communication includes two scenarios, the data leak from air-gapped networks and the transmission of external data to air-gapped networks, namely, exfiltration and infiltration. In the exfiltration scenario, software in the air-gapped networks modulates and encodes data by manipulating the power consumption of the equipment during transmission, which is then sent outside through the power line. The device utilizes a smart plug power meter to record current fluctuations and subsequently decode any leaked data. In the infiltration scenario, a smart plug is used to control the power supply status of a device’s power cord, enabling data encoding and decoding by turning the power supply on and off. The software in the air-gapped equipment captures and decodes the power supply status to infiltrate. We discuss relevant literature and provide scientific background on smart plugs and power line communication. We simulate the communication scenario, propose a communication scheme, and present data modulation techniques as well as a communication transmission protocol for air-gap channels. Our evaluation of the PowerBridge air-gap channels demonstrates that data can leak from the air-gapped computer into the power line at an approximate rate of 30 bps, which can be captured by the smart plug. Additionally, it is possible for data to penetrate from the smart plug into air-gapped networks at a speed exceeding 1 bps.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3