RT-DETR-Tomato: Tomato Target Detection Algorithm Based on Improved RT-DETR for Agricultural Safety Production

Author:

Zhao Zhimin1,Chen Shuo1,Ge Yuheng1,Yang Penghao1,Wang Yunkun1,Song Yunsheng12ORCID

Affiliation:

1. School of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China

2. Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of Ministry of Agriculture and Rural Affars, Shandong Agricultural University, Taian 271018, China

Abstract

The detection of tomatoes is of vital importance for enhancing production efficiency, with image recognition-based tomato detection methods being the primary approach. However, these methods face challenges such as the difficulty in extracting small targets, low detection accuracy, and slow processing speeds. Therefore, this paper proposes an improved RT-DETR-Tomato model for efficient tomato detection under complex environmental conditions. The model mainly consists of a Swin Transformer block, a BiFormer module, path merging, multi-scale convolutional layers, and fully connected layers. In this proposed model, Swin Transformer is chosen as the new backbone network to replace ResNet50 because of its superior ability to capture broader global dependency relationships and contextual information. Meanwhile, a lightweight BiFormer block is adopted in Swin Transformer to reduce computational complexity through content-aware flexible computation allocation. Experimental results show that the average accuracy of the final RT-DETR-Tomato model is greatly improved compared to the original model, and the model training time is greatly reduced, demonstrating better environmental adaptability. In the future, the RT-DETR-Tomato model can be integrated with intelligent patrol and picking robots, enabling precise identification of crops and ensuring the safety of crops and the smooth progress of agricultural production.

Funder

Shandong Provincial Natural Science Foundation, China

Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3