Numerical Simulation of Vertical Well Depressurization-Assisted In Situ Heating Mining in a Class 1-Type Hydrate Reservoir

Author:

Wan Tinghui12,Li Zhanzhao12,Lu Hongfeng12,Tian Lieyu12,Wen Mingming12,Chen Zongheng12,Li Qi12,Qu Jia12,Wang Jingli12

Affiliation:

1. Guangzhou Marine Geology Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou 511458, China

2. National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511458, China

Abstract

In situ electric heating is an important method used to increase production capacity during the extraction of natural gas hydrates. This work numerically evaluated the sensitivity of different heating parameters on gas production behavior with a vertical well depressurization in the Shenhu Sea area hydrate reservoir, the production pressure difference of 4 MPa, and continuous depressurization for 1080 days. The results showed that the in situ electric heating method can effectively enhance production capability by promoting hydrate dissociation and eliminating secondary hydrates. Compared with scenarios without heating, implementing whole wellbore heating (100 W/m) increases cumulative gas production (Vg) by 118.56%. When intermittent heating is applied to the local wellbore (15 m) located in the three-phase layer (with an interval of 30 days) and stops heating in advance at 480 days, there is no significant difference in Vg compared to the whole wellbore heating case, and the cumulative heat input is only 4.76%. We recommend considering intermittent heating of the local wellbore and stopping heating in advance during vertical well depressurization as this approach significantly reduces heating energy consumption while simultaneously improving production capacity.

Funder

National Key Research and Development Program of China

Guangdong Basic and Applied Basic Research Foundation

Guangzhou Science and Technology Program

the Director General’s Scientific Research Fund of Guangzhou Marine Geological Survey, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3